Abstract

Probing the orientation and oxygenation state of single molecules (SMs) is of great importance for understanding the advanced structure of individual molecules. Here, we manipulate molecules transporting through the hot spot of a sub-10 nm conical gold nanopore and acquire the multidimensional structural information of the SMs by surface enhanced Raman scattering (SERS) detection. The sub-10 nm size and conical shape of the plasmonic nanopore guarantee its high detection sensitivity. SERS spectra show a high correlation with the orientations of small-sized single rhodamine 6G (R6G) during transport. Meanwhile, SERS spectra of a single hemoglobin (Hb) reveal both the vertical/parallel orientations of the porphyrin ring and oxygenated/deoxygenated states of Hb. The present study provides a new strategy for bridging the primary sequence and the advanced structure of SMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.