Abstract

This paper demonstrates the first application of tapping-mode scanning force microscopy (TM SFM) in the compositional mapping of modified glassy carbon (GC) electrodes. Using TM SFM, we have been able to track both compositional and topographical changes of polished GC induced by electrochemical pretreatment (ECP). Photoresist-based microfabrication techniques were employed to produce surfaces consisting of segregated modified and unmodified regions for direct comparison in the same image. Our results show that ECP of GC via anodization in basic solutions for short times (∼10 s) initially removes the ubiquitous layer of polishing debris via an etching process. Longer anodization in basic electrolyte results in significant etching of the GC surface. ECP in acidic solutions yields little topographic change compared to basic electrolytes. Electrochemical results obtained for three redox systems studied on both modified and unmodified GC electrodes correlate with the TM SFM images collected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call