Abstract

We present an experimental procedure, based on Meissner effect levitation of neodymium ferromagnets, as a method of measuring the gravitational interactions between mg masses. The scheme consists of two superconducting lead traps, with a magnet levitating in each trap. The levitating magnets behave as harmonic oscillators, and by carefully driving the motion of one magnet on resonance with the other, we find that it should be easily possible to measure the gravitational field produced by a 4~mg sphere, with the gravitational attraction from masses as small as 30~$\mu$g predicted to be measurable within realistic a realistic measurement time frame. We apply this acceleration sensitivity to one concrete example and show the ability of testing models of modified Newtonian dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.