Abstract

Cellulose nanofibrils (CNFs) have gained much attention as part of biocompatible soft hydrogels used in various biomedical applications such as biodegradable scaffolds, biomedicine, tissues, and regenerative medicine. The CNF hydrogels were mediated with metal cations for improved mechanical strength and structural reversibility. Intermolecular interactions in these CNF hydrogels are controlled by metal cation-carboxylate coordination bonding, leading to the creation of interconnected three-dimensional nanofibril structures that produce high structural reversibility. The nonlinear inter- and intra-cycle were investigated viscoelastic responses of these CNF hydrogels by quantitative nonlinear viscoelastic parameters and transient responses. The dynamic and transitional analyses conducted indicate that the structural deformation and recovery characteristics of the CNF hydrogels are affected by the valency number of the metal cations. This property can be carefully chosen to tune the intermolecular interactions between the cellulose nanofibrils to create an efficient interwoven network structure with high structural reversibility that can go through repeated cycles of reformation and yielding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call