Abstract

A means to control lysozyme conformation with light illumination has been developed using the interaction of the protein with a photoresponsive surfactant. Upon exposure to the appropriate wavelength of light, the azobenzene surfactant undergoes a reversible photoisomerization, with the visible-light (trans) form being more hydrophobic than the UV-light (cis) form. As a result, surfactant binding to the protein and, thus, protein unfolding, can be tuned with light. Small-angle neutron scattering (SANS) measurements were used to provide detailed information of the protein conformation in solution. Shape-reconstruction methods applied to the SANS data indicate that under visible light the protein exhibits a native-like form at low surfactant concentrations, a partially swollen form at intermediate concentrations, and a swollen/unfolded form at higher surfactant concentrations. Furthermore, the SANS data combined with FT-IR spectroscopic analysis of the protein secondary structure reveal that unfolding occurs primarily in the alpha domain of lysozyme, while the beta domain remains relatively intact. Thus, the surfactant-unfolded intermediate of lysozyme appears to be a separate structure than the well-known alpha-domain intermediate of lysozyme that contains a folded alpha domain and unfolded beta domain. Because the interactions between the photosurfactant and protein can be tuned with light, illumination with UV light returns the protein to a native-like conformation. Fluorescence emission data of the nonpolar probe Nile red indicate that hydrophobic domains become available for probe partitioning in surfactant-protein solutions under visible light, while the availability of these hydrophobic domains to the probe decrease under UV light. Dynamic light scattering and UV-vis spectroscopic measurements further confirm the shape-reconstruction findings and reveal three discrete conformations of lysozyme. The results clearly demonstrate that visible light causes a greater degree of lysozyme swelling than UV light, thus allowing for the protein conformation to be controlled with light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.