Abstract
Ultra-high molecular weight polyethylene (UHMWPE) and its derivatives have been clinically used as an acetabular liner material in total hip joint replacement (THR) over last six decades. Despite significant efforts, the longevity of UHMWPE implants is still impaired due to their compromised tribological performance, leading to osteolysis and aseptic loosening. The present study aims to critically evaluate and analyze the tribological performance, of the next generation acetabular liner material, that is, a chemically modified graphene oxide (GO) reinforced HDPE/UHMWPE (HU) bionanocomposite (HUmGO), against stainless steel (SS 316L) counterface in lubricated conditions. This work also provides a performance comparative assessment of HUmGO with respect to medical grades, UHMWPE (UC) and crosslinked UHMWPE (XL-UC). Significant attempts have been made to correlate the tribological properties (frictional behavior, wear rate, wear debris shape and size, wear mechanism) with the physicomechanical conditions (contact stresses) at sliding contact and the variation in molecular architecture of different UHMWPE materials. Additionally, an emphasis is put forward to critically anlyze the nature of lubrication regime based on the bearing characterstic parameters. HUmGO exhibited a lower COF (0.07) and specific wear rate (2.86 × 10-8mm3/Nm) than UC and XL-UC under identical sliding conditions. The worn surfaces on HUmGO revealed the signatures of less abrasive wear and limited deformation. Based on the estimated lambda (λ) ratio and Sommerfield number, all the investigated sliding contacts exhibited boundary lubrication. Taken together, the modified GO reinforced HDPE/UHMWPE bionanocomposite can be considered as a new generation biomaterial for the fabrication of acetabular liner for hip-joint prosthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.