Abstract

Nanoplastics (NPs) are omnipresent in the environment and contribute to human exposure. However, little is known regarding the long-term effects of NPs on human health. In this study, human intestinal Caco-2 cells were exposed to polystyrene nanoplastics (nanoPS) in an environmentally relevant concentration range (102-109 particles/mL) under two realistic exposure scenarios. In the first scenario, cells were repeatedly exposed to nanoPS every 2 days for 12 days to study the long-term effects. In the second scenario, only nanoPS was added once and Caco-2 cells were cultured for 12 days to study the duration of the initial effects of NPs. Under repeated dosing, initial subtle effects on mitochondria induced by low concentrations would accrue over consistent exposure to nanoPS and finally lead to significant impairment of mitochondrial respiration, mitochondrial mass, and cell differentiation process at the end of prolonged exposure, accompanied by significantly increased glycolysis over the whole exposure period. Single dosing of nanoPS elicited transient effects on mitochondrial and glycolytic functions, as well as increased reactive oxygen species (ROS) production in the early phase of exposure, but the self-recovery capacity of cells mitigated these effects at intermediate culture times. Notably, secondary effects on glycolysis and ROS production were observed during the late culture period, while the cell differentiation process and mitochondrial mass were not affected at the end. These long-term effects are of crucial importance for comprehensively evaluating the health hazards arising from lifetime exposure to NPs, complementing the extensively observed acute effects associated with prevalent short-term exposure to high concentrations. Our study underlines the need to study the toxicity of NPs in realistic long-term exposure scenarios such as repeated dosing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.