Abstract

Earlier studies with 2-bromocyclohexanone demonstrated a measurable long-range coupling constant (4 JH2,H6 ) for the equatorial conformer, although 4 JH2,H4 and 4 JH4,H6 were not observed; as a consequence, it is inferred that the carbonyl group plays an important role particularly due to hyperconjugative interactions σC2H2 →π*C═O and σC6H6 →π*C═O. In the present study, NBO analysis and coupling constant calculations were performed to cyclohexanone and cyclohexanethione alpha substituted with F, Cl, and Br, aiming to evaluate the halogen effect and acceptor character of the π* orbital on the long-range coupling pathway. The σC2H2 →π*C1═Y and σC6H6 →π*C1═Y (Y═O and S) hyperconjugative interactions for the equatorial conformer indeed contribute for the 4 JH2,H6 transmission mechanism. Surprisingly, the 4 JH2,H6 value is higher for the carbonyl compounds, although the interactions σC2H2 →π*C═Y and σC6H6 →π*C═Y are more efficient for the thiocarbonyl compounds. Accordingly, the Fermi contact (FC) contribution for the thiocarbonyl compounds decays deeper than in ketones, thus reducing more the 4 JH2,H6 values. Moreover, both πC═S →σ*C─X and πC═S →σ*C─H interactions seem to be stronger in thiocarbonyl than in carbonylic compounds. The implicit solvent effect (DMSO and water) on the coupling constant values was negligible when compared with the gas phase. On the other hand, an explicit solvent effect was found and 4 JH2,H6 for the thiocarbonyl compounds appeared to be more sensitive than for the cyclohexanones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.