Abstract

In a quantum sense, vacuum is not an empty void but full of virtual particles (fields). It may have long-range properties, be altered, and even undergo phase transitions. It is suggested that long-range properties of a quantum vacuum may be probed by distributing matter over a large spatial volume. Here, we study a simplest example of such, i.e., two uniformly accelerated Unruh-DeWitt detectors which are spatially separated, and examine the inter-detector interaction energy arising from the coupling between the detectors and fluctuating fields to see if novel phenomena related to the long-range properties emerge of a vacuum altered by uniformly accelerating two spatially separated detectors through it. Our results show that when the inter-detector separation is much larger than the thermal wavelength of the Unruh thermal bath, the inter-detector interaction displays a completely new behavior, which, as compared with that of the inertial detectors, is surprisingly exclusively acceleration-dependent, signaling a new phase of the vacuum in which its imprint as seen by two inertial observers seems to be completely wiped out. Moreover, we demonstrate that the inter-detector interaction in the near region can be significantly enhanced by the accelerated motion in certain circumstances, and with two Rydberg atoms as the detectors, the acceleration required for an experimentally detectable enhancement of the interaction energy can be 105 times smaller than that required for the detection of the Unruh effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call