Abstract

AbstractBased upon precise terahertz (THz) measurements of the solvated amino acid glycine and accompanying ab‐initio molecular‐dynamics simulations, we show that the N‐C‐C‐O open/close mode at 315 cm−1 serves as a sensitive, label‐free probe for the local protonation of the amide group. Experimentally, we can show that this holds not only for glycine but also for diglycine and valine. The approach is more general, since the changes due to protonation result in intensity changes which can be probed by THz time domain (0–50 cm−1) as well as by precise THz‐FT spectroscopy (50–400 cm−1). A detailed analysis allows us to directly correlate the titration spectra with pKa values. This demonstrates the potential of THz spectroscopy to probe the charge state of a natural amino acid in water in a label‐free manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.