Abstract
Improving the performance of organic electronic devices depends on exploiting the complex nanostructures formed in the active layer. Current imaging methods based on transmission electron microscopy provide limited chemical sensitivity, and thus the application to materials with compositionally similar phases or complicated multicomponent systems is challenging. Here, it is demonstrated that monochromated transmission electron microscopes can generate contrast in organic thin films based on differences in the valence electronic structure at energy losses below 10 eV. In this energy range, electronic fingerprints corresponding to interband excitations in organic semiconductors can be utilized to generate significant spectral contrast between phases. Based on differences in chemical bonding of organic materials, high‐contrast images are thus obtained revealing the phase separation in polymer/fullerene mixtures. By applying principal component analysis to the spectroscopic image series, further details about phase compositions and local electronic transitions in the active layer of organic semiconductor mixtures can be explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.