Abstract

Several rare-earth transition-metal ferrimagnetic systems exhibit all-optical magnetization switching upon excitation with a femtosecond laser pulse. Although this phenomenon is very promising for future opto-magnetic data storage applications, the role of non-local spin transport in these systems is scarcely understood. Using Co/Gd and Co/Tb bilayers we isolate the contribution of the rare-earth materials to the generated spin currents by using the precessional dynamics they excite in an adjacent ferromagnetic layer as a probe. By measuring THz standing spin-waves as well as GHz homogeneous precessional modes, we probe both the high- and low-frequency components of these spin currents. The low-frequency homogeneous mode indicates a significant contribution of Gd to the spin current, but not from Tb, consistent with the difficulty in achieving all-optical switching in Tb-containing systems. Measurements on the THz frequency spin waves reveal the inability of the rare-earth generated spin currents to excite dynamics at the sub-ps timescale. We present modelling efforts using the $s$-$d$ model, which effectively reproduce our results and allow us to explain the behavior in terms of the temporal profile of the spin current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.