Abstract
We study topological properties of large-scale structure in a set of scale-free N-body simulations using the genus and percolation curves as topological characteristics. Our results show that as gravitational clustering advances, the density field shows an increasingly pronounced departure from Gaussian reflected in the changing shape of the percolation curve as well as the changing amplitude and shape of the genus curve. Both genus and percolation curves differentiate between the connectedness of overdense and underdense regions if plotted against the density. When plotted against the filling factor, the percolation curve alone retains this property. The genus curve shows a pronounced decrease in amplitude caused by phase correlations in the nonlinear regime. Both genus and percolation curves provide complementary probes of large-scale structure topology, and can be used to discriminate between models of structure formation and the analysis of observational data, such as galaxy catalogs and microwave background radiation maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.