Abstract
The one-point distribution of the height for the continuum Kardar-Parisi-Zhang equation is determined numerically using the mapping to the directed polymer in a random potential at high temperature. Using an importance sampling approach, the distribution is obtained over a large range of values, down to a probability density as small as 10^{-1000} in the tails. The short-time behavior is investigated and compared with recent analytical predictions for the large-deviation forms of the probability of rare fluctuations, showing a spectacular agreement with the analytical expressions. The flat and stationary initial conditions are studied in the full space, together with the droplet initial condition in the half-space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.