Abstract
Fluorescent particle tracking is a powerful technique for studying intracellular transport and microrheological properties within living cells, which in most cases employs exogenous fluorescent tracer particles delivered into cells or fluorescent staining of cell organelles. Herein, we propose an alternative strategy, which is based on the generation of fluorescent species in situ with ultrashort laser pulses. Using mouse germinal vesicle oocytes as a model object, we demonstrate that femtosecond laser irradiation produces compact dense areas in the intracellular material containing fluorescent carbon dots synthesized from biological molecules. These dots have tunable persistent and excitation-dependent emission, which is highly advantageous for fluorescent imaging. We further show that tight focusing and tuning of irradiation parameters allow precise control of the location and size of fluorescently labeled areas and minimization of damage inflicted to cells. Pieces of the intracellular material down to the submicrometer size can be labeled with laser-produced fluorescent dots in real time and then employed as probes for detecting intracellular motion activity via fluorescent tracking. Analyzing their diffusion in the oocyte cytoplasm, we arrive to realistic characteristics of active forces generated within the cell and frequency-dependent shear modulus of the cytoplasm. We also quantitatively characterize the level of metabolic activity and density of the cytoskeleton meshwork. Our findings establish a new technique for probing intracellular mechanical properties and also promise applications in tracking individual cells in population or studies of spatiotemporal cell organization.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.