Abstract

This paper reports the formation of flower-like hierarchical molybdenum disulfide (MoS2) nanoparticles following a simple one-step hydrothermal process with varying temperatures (200 °C and 220 °C). The as-synthesized particles were examined crystallographically by X-ray diffraction (XRD) method which revealed the formation of hexagonal MoS2 (2H-MoS2) and that the crystallite size of the particles increased with increasing hydrothermal temperature. Surface morphological characteristics of the particles were investigated by a field emission scanning electron microscope (FESEM) and interesting details were revealed such as the rounded 3D flower-like microstructure of the MoS2 particles and the petals of the flowers were composed of platelets built up by stacked-up MoS2 nanosheets. With the increase in hydrothermal temperature, the interlayer spacing of stacked layers of intense (002) plane is slightly decreased although the crystallinity of the material is improved. Both diameter and thickness of the nanoflowers and the nanoplatelets increased twice with increasing the temperatures. A visual crystallographic perspective was presented through simulation of 3D wireframe unit cell associated with the individual lattice planes as observed in the XRD pattern of the samples. In addition, a plausible growth mechanism is proposed for the formation of the obtained MoS2 nanoflowers on the basis of experimental observations and analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.