Abstract

An atomic force microscopy (AFM) and confocal Raman microscopy study of the interfacial electron transfer of a dye-sensitization system, i.e., alizarin adsorbed upon TiO(2) nanoparticles, has revealed the distribution of the mode-specific vibrational reorganization energies encompassing different local sites ( approximately 250-nm spatial resolution). Our experimental results suggest inhomogeneous vibrational reorganization energy barriers and different Franck-Condon coupling factors of the interfacial electron transfer. The total vibrational reorganization energy was inhomogeneous from site to site; specifically, mode-specific analyses indicated that energy distributions were inhomogeneous for bridging normal modes and less inhomogeneous or homogeneous for nonbridging normal modes, especially for modes far away from the alizarin-TiO(2) coupling hydroxyl modes. The results demonstrate a significant step forward in characterizing site-specific inhomogeneous interfacial charge-transfer dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.