Abstract

In this study, a method to opto-electronically probe the individual junctions and carrier transport across interfaces in fully printed and coated tandem polymer solar cells is described, enabling the identification of efficiency limiting printing/coating defects. The methods used are light beam induced current (LBIC) mapping, External quantum efficiency (EQE) measurements, and monochromatic current–voltage (I–V) characterization. Using these methods, inherent limitations to the accuracy of EQE and LBIC measurements on non-ideal tandem solar cells are identified and described through the use of a small-signal electrical model. The model is able to predict the EQE spectrum of the non-ideal polymer tandem solar cell, using extracted values of shunt- and series resistance of the individual junction of the tandem cell. This finally enables LBIC mapping of the individual junctions of the tandem polymer solar cells, using a combination of light and voltage-biasing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call