Abstract

We probe in situ by synchrotron SAXS/WAXS and UV-visible spectroscopy the nucleation and growth of gold nanoparticles. The use of a fast-mixing stopped-flow device enables the assessment of the whole particle formation process with a 200 ms time resolution. The number of particles, their size distribution, and the yield of the reaction is determined in real time through the quantitative analysis of the SAXS data on an absolute scale. Two ligands exhibit drastically different behaviors: when an alkanoic acid is used, a nucleation phase of 1 s is followed by a growth step whose rate is limited by the reaction of the monomers at the interface; on the other hand, when an alkylamine is used, the nucleation rate is increased by an order of magnitude, thus annealing growth by a lack of monomer and yielding R=1 nm particles in 2 s, as compared with R=3.7 nm in 12 s for the acid case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.