Abstract

In this study, NMR and molecular dynamics simulations were employed to study IgG1 FC binding to multimodal surfaces. Gold nanoparticles functionalized with two multimodal cation-exchange ligands (Capto and Nuvia) were synthesized and employed to carry out solution-phase NMR experiments with the FC. Experiments with perdeuterated 15N-labeled FC and the multimodal surfaces revealed micromolar residue-level binding affinities as compared to millimolar binding affinities with these ligands in free solution, likely due to cooperativity and avidity effects. The binding of FC with the Capto ligand nanoparticles was concentrated near an aliphatic cluster in the CH2/CH3 interface, which corresponded to a focused hydrophobic region. In contrast, binding with the Nuvia ligand nanoparticles was more diffuse and corresponded to a large contiguous positive electrostatic potential region on the side face of the FC. Results with lower-ligand-density nanoparticles indicated a decrease in binding affinity for both systems. For the Capto ligand system, several aliphatic residues on the FC that were important for binding to the higher-density surface did not interact with the lower-density nanoparticles. In contrast, no significant difference was observed in the interacting residues on the FC to the high- and low-ligand density Nuvia surfaces. The binding affinities of FC to both multimodal-functionalized nanoparticles decreased in the presence of salt due to the screening of multiple weak interactions of polar and positively charged residues. For the Capto ligand nanoparticle system, this resulted in an even more focused hydrophobic binding region in the interface of the CH2 and CH3 domains. Interestingly, for the Nuvia ligand nanoparticles, the presence of salt resulted in a large transition from a diffuse binding region to the same focused binding region determined for Capto nanoparticles at 150 mM salt. Molecular dynamics simulations corroborated the NMR results and provided important insights into the molecular basis of FC binding to these different multimodal systems containing clustered (observed at high-ligand densities) and nonclustered ligand surfaces. This combined biophysical and simulation approach provided significant insights into the interactions of FC with multimodal surfaces and sets the stage for future analyses with even more complex biotherapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.