Abstract

We report solid-state 17O NMR determination of the 17O NMR tensors for the keto carbonyl oxygen (O6) of guanine in two 17O-enriched guanosine derivatives: [6-17O]guanosine (G1) and 2',3',5'-O-triacetyl-[6-17O]guanosine (G2). In G1.2H2O, guanosine molecules form hydrogen-bonded G-ribbons where the guanine bases are linked by O6...H-N2 and N7...H-N7 hydrogen bonds in a zigzag fashion. In addition, the keto carbonyl oxygen O6 is also weakly hydrogen-bonded to two water molecules of hydration. The experimental 17O NMR tensors determined for the two independent molecules in the asymmetric unit of G1.2H2O are: Molecule A, CQ=7.8+/-0.1 MHz, etaQ=0.45+/-0.05, deltaiso=263+/-2, delta11=460+/-5, delta22=360+/-5, delta33=-30+/-5 ppm; Molecule B, CQ=7.7+/-0.1 MHz, etaQ=0.55+/-0.05, deltaiso=250+/-2, delta11=440+/-5, delta22=340+/-5, delta33=-30+/-5 ppm. In G1/K+ gel, guanosine molecules form extensively stacking G-quartets. In each G-quartet, four guanine bases are linked together by four pairs of O6...H-N1 and N7...H-N2 hydrogen bonds in a cyclic fashion. In addition, each O6 atom is simultaneously coordinated to two K+ ions. For G1/K+ gel, the experimental 17O NMR tensors are: CQ=7.2+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2, delta11=400+/-5, delta22=300+/-5, delta33=-20+/-5 ppm. In the presence of divalent cations such as Sr2+, Ba2+, and Pb2+, G2 molecules form discrete octamers containing two stacking G-quartets and a central metal ion, that is, (G2)4-M2+-(G2)4. In this case, each O6 atom of the G-quartet is coordinated to only one metal ion. For G2/M2+ octamers, the experimental 17O NMR parameters are: Sr2+, CQ=6.8+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm; Ba2+, CQ=7.0+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2 ppm; Pb2+, CQ=7.2+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm. We also perform extensive quantum chemical calculations for the 17O NMR tensors in both G-ribbons and G-quartets. Our results demonstrate that the 17O chemical shift tensor and quadrupole coupling tensor are very sensitive to the presence of hydrogen bonding and ion-carbonyl interactions. Furthermore, the effect from ion-carbonyl interactions is several times stronger than that from hydrogen-bonding interactions. Our results establish a basis for using solid-state 17O NMR as a probe in the study of ion binding in G-quadruplex DNA and ion channel proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call