Abstract

Electron transport through a quantum dot coupled to superconducting leads shows a sharp conductance onset when a quantum dot orbital level crosses the superconducting coherence peak of one lead. We study superconducting single electron transistors in the weak coupling limit by connecting individual gold nanoparticles with aluminum junctions formed by electromigration. We show that the transport features close to the conductance onset threshold can be accurately described by the quantum dot levels' hybridization with the leads, which is strongly enhanced by the divergent density of states at the superconducting gap edge. This highlights the importance of electron cotunneling effects in spectroscopies with superconducting probes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call