Abstract
New solar wind data from the Voyager 1 and Voyager 2 spacecraft, together with the SOHO SWAN measurements of the direction that neutral hydrogen enters into the inner heliosheath and neutral helium measurements provided by multiple observations are expected to provide more reliable constraints on the ionization ratio of the local interstellar medium (LISM) and the direction and magnitude of the interstellar magnetic field (ISMF). In this paper we use currently the most sophisticated numerical model of the heliospheric interface, which is based on an MHD treatment of the ion flow and kinetic modeling of neutral particles, to analyze an ISMF-induced asymmetry of the heliosphere in the presence of the interplanetary magnetic field and neutral particles. It is shown that secondary hydrogen atoms modify the LISM properties leading to its shock-free deceleration at the heliopause. We determine the deflection of hydrogen atoms from their original trajectory in the unperturbed LISM and show that it occurs not only in the plane defined by the ISMF and LISM velocity vectors, but also, to a lesser extent, perpendicular to this plane. We also consider the possibility of using 2-3 kHz radio emission data to further constrain the ISMF direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.