Abstract

A laser-assisted atom-probe-tomographic (LAAPT) method has been developed and applied to measure and characterize the three-dimensional atomic and electronic nanostructure at an yttrium-doped barium zirconate (BaZr0.9Y0.1O3-δ, BZY10) grain boundary. Proton-conducting perovskites, such as BZY10, are attracting intense interest for a variety of energy conversion applications. However, their implementation has been hindered, in part, because of high grain-boundary (GB) resistance that is attributed to a positive GB space-charge layer (SCL). In this study, LAAPT is used to analyze BZY10 GB chemistry in three dimensions with subnanometer resolution. From this analysis, maps of the charge density and electrostatic potential arising at the GBs are derived, revealing for the first time direct chemical evidence that a positive SCL indeed exists at these GBs. These maps reveal new insights on the inhomogeneity of the SCL region and produce an average GB potential barrier of approximately 580 mV, agreeing with previous indirect electrochemical measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.