Abstract

In this study, we present the probe SATE-G3P-N3 as a novel tool for metabolic labeling of glycerolipids (GLs) to investigate lipid metabolism in yeast cells. By introducing a clickable azide handle onto the glycerol backbone, this probe enables general labeling of glycerolipids. Additionally, this probe contains a caged phosphate moiety at the glycerol sn-3 position to not only facilitate probe uptake by masking negative charge but also to bypass the phosphorylation step crucial for initiating phospholipid synthesis, thereby enhancing phospholipid labeling. The metabolic labeling activity of the probe was thoroughly assessed through cellular fluorescence microscopy, mass spectrometry (MS), and thin-layer chromatography (TLC) experiments. Fluorescence microscopy analysis demonstrated successful incorporation of the probe into yeast cells, with labeling predominantly localized at the plasma membrane. LCMS analysis confirmed metabolic labeling of various phospholipid species (PC, PS, PA, PI, and PG) and neutral lipids (MAG, DAG, and TAG), and GL labeling was corroborated by TLC. These results showcased the potential of the SATE-G3P-N3 probe in studying GL metabolism, offering a versatile and valuable approach to explore the intricate dynamics of lipids in yeast cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call