Abstract

ABSTRACT Detection of delayed sub-TeV photons from gamma-ray bursts (GRBs) by MAGIC and HESS has proven the promising future of GRB afterglow studies with the Cherenkov Telescope Array (CTA), the next-generation gamma-ray observatory. With the unprecedented sensitivity of CTA, afterglow detection rates are expected to increase dramatically. In this paper, we explore the multidimensional afterglow parameter space to see the detectability of sub-TeV photons by CTA. We use a one-zone electron synchrotron and synchrotron self-Compton model to obtain the spectral energy distribution. We consider bursts going off in a medium of homogenous density. The blast wave is assumed to be radiatively inefficient and evolving adiabatically. Considering that the electron acceleration is not efficient if the acceleration time-scale exceeds the radiative cooling time-scale, we find that the sub-TeV emission is always due to the self-Compton process. We find that jets with high kinetic energy or large bulk Lorentz factor decelerating into a dense ambient medium offer better detection prospects for CTA. For relatively lower values of the downstream magnetic field, electrons are slow-cooling, and the emitted radiation is positively correlated with the magnetic field. For larger magnetic fields, the electron population enters the fast-cooling phase where the radiated flux is inversely proportional to the magnetic field. We apply our results in the context of bright TeV afterglows detected in recent years. Our results indicate that cosmological short GRBs have only moderate prospects of detection by CTA while local neutron star merger counterparts can be detected if the jet is launched towards the observer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call