Abstract

Precision measurements of Schiff moments in heavy, deformed nuclei are sensitive probes of beyond standard model T, P violation in the hadronic sector. While the most stringent limits on Schiff moments to date are set with diamagnetic atoms, polar polyatomic molecules can offer higher sensitivities with unique experimental advantages. In particular, symmetric top molecular ions possess K doublets of opposite parity with especially small splittings, leading to full polarization at low fields, internal comagnetometer states useful for rejection of systematic effects, and the ability to perform sensitive searches for T, P violation using a small number of trapped ions containing heavy exotic nuclei. We consider the symmetric top cation ^{225}RaOCH_{3}^{+} as a prototypical and candidate platform for performing sensitive nuclear Schiff measurements and characterize in detail its internal structure using relativistic abinitio methods. The combination of enhancements from a deformed nucleus, large polarizability, and unique molecular structure make this molecule a promising platform to search for fundamental symmetry violation even with a single trapped ion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.