Abstract

Our previous study (Zhou et al., 2023) proposed a fuzzy inference model to inverse the predominant flow area in fractured reservoirs. Yet, geothermal reservoir parameters in the direction problem model are hard to make exactly consistent with the actual parameters. This study aims to discuss the impacts of discrepancies between actual geothermal reservoir environment and simulated reservoir environment on the inversion results. An inversion model (including direction problem model, fuzzy inference model, and genetic algorithm) is established to explore the location of predominant flow area under different guess geothermal reservoir environments. The effects of running time, guess reservoir environment (temperature field, pressure field, and Hot Dry Rock property) and guess predominant fracture area property on inversion results are studied. Results show that longer running time can obtain good inversion results, and the inversion speed decreases as running time increases. In addition, the inversion model has good inversion accuracy under different guess geothermal reservoir environments. Lastly, the inversion accuracy is very poor when the guess permeability of predominant fracture area is extremely low. However, the inversion model still needs improvement in the initial stage. It cannot inverse the location of predominant flow area when the running time is less than 1×107 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.