Abstract

Excitons, as bound electron-hole paired quasiparticle, play an essential role in the energy transport in the optical-electric properties of semiconductors. Their momentum-energy dispersion relation is a fundamental physical property of great significance to understand exciton dynamics. However, this dispersion is seldom explored especially in two-dimensional transition metal dichalcogenides with rich valleytronic properties. In this work, momentum resolved electron energy-loss spectroscopy was used to measure the dispersions of excitons in freestanding monolayer WSe_{2}. Besides the parabolically dispersed valley excitons, a subgap dispersive exciton was observed at nonzero momenta for the first time, which can be introduced by the prolific Se vacancies. Our work provides a paradigm to directly probe exciton dispersions in 2D semiconductors and could be generalized to many low-dimensional systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.