Abstract

The addition of N 2 to a millisecond-pulsed glow discharge (PGD) allows diagnostic measurements of the PGD but is found to drastically influence the transient signals arising from the argon and sputtered analyte atoms. Penning excitation between metastable argon atoms and ground state nitrogen molecules and charge transfer between argon ions and the added nitrogen reduce the degree of ionization of sputtered atoms during the power-on, plateau, period by a factor of ∼10 (at 1% N 2 by vol.). The added nitrogen affects sputtered atom emission signals less at this time because electron excitation dominates the excitation of these species. Upon power termination, afterpeak, the added nitrogen prevents plasma recombination in two major mechanisms: (i) the nitrogen reduces the number of argon ions available for recombination in the afterpeak; and (ii) vibrationally excited states of nitrogen slow the thermalization of electrons thereby decreasing recombination efficiency. The argon ion population contributes significantly to the afterpeak increase in the number of metastable argon atoms. These atoms are essential for the afterpeak ionization of sputtered atoms. Judicious selection of the nitrogen partial pressure can tune the delay time of afterpeak ionization/recombination by up to 200 μs. This could be particularly beneficial for time-resolved optical or mass spectrometric analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.