Abstract

The boronic acid-based arginine analogue S-(2-boronoethyl)-L-cysteine (BEC) has been synthesized and assayed as a slow-binding competitive inhibitor of the binuclear manganese metalloenzyme arginase. Kinetic measurements indicate a K(I) value of 0.4-0.6 microM, which is in reasonable agreement with the dissociation constant of 2.22 microM measured by isothermal titration calorimetry. The X-ray crystal structure of the arginase-BEC complex has been determined at 2.3 A resolution from crystals perfectly twinned by hemihedry. The structure of the complex reveals that the boronic acid moiety undergoes nucleophilic attack by metal-bridging hydroxide ion to yield a tetrahedral boronate anion that bridges the binuclear manganese cluster, thereby mimicking the tetrahedral intermediate (and its flanking transition states) in the arginine hydrolysis reaction. Accordingly, the binding mode of BEC is consistent with the structure-based mechanism proposed for arginase as outlined in Cox et al. [Cox, J. D., Cama, E., Colleluori D. M., Pethe, S., Boucher, J. S., Mansuy, D., Ash, D. E., and Christianson, D. W. (2001) Biochemistry 40, 2689-2701.]. Since BEC does not inhibit nitric oxide synthase, BEC serves as a valuable reagent to probe the physiological relationship between arginase and nitric oxide (NO) synthase in regulating the NO-dependent smooth muscle relaxation in human penile corpus cavernosum tissue that is required for erection. Consequently, we demonstrate that arginase is present in human penile corpus cavernosum tissue, and that the arginase inhibitor BEC causes significant enhancement of NO-dependent smooth muscle relaxation in this tissue. Therefore, human penile arginase is a potential target for the treatment of sexual dysfunction in the male.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.