Abstract

Escherichia coli require mediators or composite anodes for substantial outward electron transfer, >8A/m(2). To what extent non-mediated direct electron transfer from the outer cell envelope to the anode occurs with E. coli is a debated issue. To this end, the redox behaviour of non-exoelectrogenic E. coli K12 was investigated using a bi-cathodic microbial fuel cell. The electromotive force caused by E. coli biofilms mounted 0.2-0.3 V above the value with the surrounding medium. Surprisingly, biofilms that started forming at different times synchronised their EMF even when physically separated. Non-mediated electron transfer from E. coli biofilms increased above background currents passing through the cultivation medium. In some instances, currents were rather high because of a sudden discharge of the medium constituents. Mediated conditions provided similar but more pronounced effects. The combined step-by-step method used allowed a systematic analysis of exoelectronics as encountered in microbial fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.