Abstract

We present quantum simulations of a vibrating hydrogen molecule H-2 and address the issue of electron correlation. After appropriately setting the frame and the observer plane, we were able to determine precisely the number of electrons and nuclei which actually flow by evaluating electronic and nuclear fluxes. This calculation is repeated for three levels of quantum chemistry, for which we account for no correlation, Hartree-Fock, static correlation, and dynamic correlation. Exciting each of these systems with the same amount of energy, we show that the electron correlation can be revealed with the knowledge of quantum fluxes. This is evidenced by a clear sensitivity of these fluxes to electron correlation. In particular, we find that this correlation remarkably enhances more electronic yield than the nuclear one. It turns out that less electrons accompany the nuclei in Hartree-Fock than in the correlation cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.