Abstract

Strongly-interacting dark matter can be accumulated in large quantities inside the Earth, and for dark matter particles in a few GeV mass range, it can exist in large quantities near the Earth’s surface. We investigate the constraints imposed on such dark matter properties by its upscattering by fast neutrons in nuclear reactors with subsequent scattering in nearby well-shielded dark matter detectors, schemes which are already used for searches of the coherent reactor neutrino scattering. We find that the existing experiments cover new parameter space on the spin-dependent interaction between dark matter and the nucleon. Similar experiments performed with research reactors, and lesser amount of shielding, may provide additional sensitivity to strongly-interacting dark matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.