Abstract

The ligand/quantum dots (QDs) ratio is crucial for the liquid state ligand exchange process to ensure a high-quality surface passivation and stable QDs ink. Herein we report an electrochemical method to investigate the ligand exchanged PbS-PbI2 QDs. It is found that the shell and core Pb(II) are distinguished by their reduction peak position in the cyclic voltammogram and the peak charge ratio gives the shell/core composition of the QDs. Combined with XPS analysis and UV-vis spectroscopy, it is further indicated that the shell/core ratio of PbS-PbI2 QDs varies as the ligand PbI2 concentration changes. Specifically, below a certain concentration, more PbI2 binds to the QD surface, leading to better passivation when the PbI2 concentration increases; however, beyond that concentration, decomposition of QDs likely occurs via an anion exchange process. The presented electrochemical method provides a new and powerful tool to investigate and optimize QD surface chemistry for boosting the scale up applications of QD devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call