Abstract

Insight into protein stability and folding remains an important area for protein research, in particular protein–protein interactions and the self-assembly of homodimers. The GrpE protein from Escherichia coli is a homodimer with a four-helix bundle at the dimer interface. Each monomer contributes a helix-loop-helix to the bundle. To probe the interface stabilization requirements, in terms of the amount of buried residues in the bundle necessary for dimer formation, internal deletion mutants (IDMs) were created that sequentially truncate each of the two helices in the helix-loop-helix region. Circular dichroism (CD) spectroscopy showed that all IDM's still contained a significant amount of α-helical secondary structure. IDM's that contained 11 or fewer of 22 residues originally present in the helices, or those that lost at least 50% of residues with less than 20% the solvent accessible surfaces (that is, hydrophobic residues) were unable to form a significant amount of dimer species as shown by chemical cross-linking. Gel filtration studies of IDM3.0 (one that retains 10 residues in each helix) show this variant to be mainly monomeric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.