Abstract

Experiments on strangeness production in nucleus–nucleus collisions at SIS energies address fundamental questions of modern nuclear physics: the determination of the nuclear equation-of-state at high baryon densities and the properties of hadrons in dense nuclear matter. From the yields of K+ mesons measured in heavy-ion collisions a value for the nuclear compressibility of κ≈200MeV is extracted for nuclear densities around twice saturation density using different microscopic transport models. Both the yield of K+ mesons and their anisotropic azimuthal angular distribution (elliptic flow) exhibit strong evidence for a repulsive K+N potential. The yields of K+ and K− mesons measured in proton–nucleus collisions can be reproduced by transport calculations assuming at saturation density a repulsive K+N potential of U=25MeV and an attractive K−N potential of U=−80±20MeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.