Abstract

Time-resolved, resonant X-ray sum-frequency generation in aligned selenophene molecules is calculated. A wave packet of valence-excited states, prepared by an extreme-ultraviolet pump pulse, is probed by two 12-keV X-ray probe pulses resonant with the Se core-excited states for variable time delays. At these hard-X-ray frequencies, the angström wavelength of the X-ray probe is comparable to the molecular size. We thus employ a nonlocal description of the light-matter interaction based on the minimal-coupling Hamiltonian. The wavevector-resolved resonant stimulated sum-frequency-generation signal, obtained by varying the propagation direction of hard-X-ray pulses, can thus directly monitor the transition current densities between core and ground/valence states. This is in contrast to off-resonant diffraction, which detects the transition charge densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call