Abstract

We calculate the contained and upward muon and shower fluxes due to neutrinos produced via dark matter annihilation or decay in the Galactic center. We consider dark matter models in which the dark matter particle is a gravitino, a Kaluza-Klein particle and a particle in leptophilic models. The Navarro-Frenk-White profile for the dark matter density distribution in the Galaxy is used. We incorporate neutrino oscillations by assuming maximal mixing and parametrize our results for muon and shower distributions. The muon and shower event rates and the minimum observation times in order to reach $2\ensuremath{\sigma}$ detection significance are evaluated. We illustrate how observation times vary with the cone half angle chosen about the Galactic center, with the result that the optimum angles are about 10\ifmmode^\circ\else\textdegree\fi{} and 50\ifmmode^\circ\else\textdegree\fi{} for the muon events and shower events, respectively. We find that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers are promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. We also illustrate for each model the parameter space probed with the $2\ensuremath{\sigma}$ signal detection in five years. We discuss how the shape of the parameter space probed change with significance and the observation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.