Abstract

We forecast and optimize the cosmological power of various weak-lensing aperture mass (Map) map statistics for future cosmic shear surveys, including peaks, voids, and the full distribution of pixels (1D Map). These alternative methods probe the non-Gaussian regime of the matter distribution, adding complementary cosmological information to the classical two-point estimators. Based on the SLICS and cosmo-SLICS N-body simulations, we build Euclid-like mocks to explore the S8 − Ωm − w0 parameter space. We develop a new tomographic formalism that exploits the cross-information between redshift slices (cross-Map) in addition to the information from individual slices (auto-Map) probed in the standard approach. Our auto-Map forecast precision is in good agreement with the recent literature on weak-lensing peak statistics and is improved by ∼50% when including cross-Map. It is further boosted by the use of 1D Map that outperforms all other estimators, including the shear two-point correlation function (γ-2PCF). When considering all tomographic terms, our uncertainty range on the structure growth parameter S8 is enhanced by ∼45% (almost twice better) when combining 1D Map and the γ-2PCF compared to the γ-2PCF alone. We additionally measure the first combined forecasts on the dark energy equation of state w0, finding a factor of three reduction in the statistical error compared to the γ-2PCF alone. This demonstrates that the complementary cosmological information explored by non-Gaussian Map map statistics not only offers the potential to improve the constraints on the recent σ8–Ωm tension, but also constitutes an avenue to understanding the accelerated expansion of our Universe.

Highlights

  • The coherent distortion between galaxy shapes due to the gravitational lensing by large-scale structure has emerged as one of the most powerful cosmological probes today

  • We develop a new mass map tomographic approach to include the cross-information between redshift slices, and apply it to simulated lensing catalogs matched in depth to the future Euclid survey, with a broad redshift distribution between 0 < z < 3

  • Exploring the impact on the distribution of signal-to-noise ratio (S/N) values of the map calculation that we use (Map) map, we find that the Fourier approach introduces a loss of power for the high S/N, with 5% fewer pixels with S /N ≥ 3.0 compared to the real-space computation

Read more

Summary

Introduction

The coherent distortion between galaxy shapes due to the gravitational lensing by large-scale structure has emerged as one of the most powerful cosmological probes today.

Aperture mass computation
Real space computation
Fourier space computation
SLICS and cosmo-SLICS
Galaxy positions and ellipticities
Sampling the Map distribution
Shear two-point correlation functions
Tomography
Computing cosmological forecasts
Emulator
Likelihood
Forecasts
Map statistics forecasts
Comparison of 1D Map with peaks and voids
Comparison of 1D Map with γ-2PCF
Combination of 1D Map and γ-2PCF
Comparison with literature on weak-lensing peak statistics
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call