Abstract

The CRISPR-Cas12a nuclease shreds short single-stranded DNA (ssDNA) substrates indiscriminately through trans-cleavage upon activation with a specific target DNA. This shredding activity offered the potential for development of ssDNA-templated probes with fluorescent dye (F) and quencher (Q) labels. However, the formulations of double-stranded DNA (dsDNA)-templated fluorescent probes have not been reported possibly due to unknown (or limited) activity of Cas12a against short dsDNAs. The ssDNA probes have been shown to be powerful for diagnostic applications; however, limiting the probe selections to short ssDNAs could be restrictive from an application and probe diversification standpoint. Here, we report a dsDNA substrate (probe-full) for probing Cas12a trans-cleavage activity upon target detection. A diverse set of Cas12a substrates with alternating dsDNA character were designed and studied using fluorescence spectroscopy. We have observed that probe-full without any nick displayed trans-cleavage performance that was better than that of the form that contains a nick. Different experimental conditions of salt concentration, target concentration, and mismatch tolerance were examined to evaluate the probe performance. The activity of Cas12a was programmed for a dsDNA frame copied from a tobacco curly shoot virus (TCSV) or hepatitis B virus (HepBV) genome by using crRNA against TCSV or HepBV, respectively. While on-target activity offered detection of as little as 10 pM dsDNA target, off-target activity was not observed even at 1 nM control DNAs. This study demonstrates that trans-cleavage of Cas12a is not limited to ssDNA substrates, and Cas12a-based diagnostics can be extended to dsDNA substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call