Abstract

The transcription factor CooA is a CRP/FNR (cAMP receptor protein/ fumarate and nitrate reductase) superfamily protein that uses heme to sense carbon monoxide (CO). Allosteric activation of CooA in response to CO binding is currently described as a series of discrete structural changes, without much consideration for the potential role of protein dynamics in the process of DNA binding. This work uses site-directed spin-label electron paramagnetic resonance spectroscopy (SDSL-EPR) to probe slow timescale (μs-ms) conformational dynamics of CooA with a redox-stable nitroxide spin label, and IR spectroscopy to probe the environment at the CO-bound heme. A series of cysteine substitution variants were created to selectively label CooA in key functional regions, the heme-binding domain, the 4/5-loop, the hinge region, and the DNA binding domain. The EPR spectra of labeled CooA variants are compared across three functional states: Fe(III) “locked off”, Fe(II)-CO “on”, and Fe(II)-CO bound to DNA. We observe changes in the multicomponent EPR spectra at each location; most notably in the hinge region and DNA binding domain, broadening the description of the CooA allosteric mechanism to include the role of protein dynamics in DNA binding. DNA-dependent changes in IR vibrational frequency and band broadening further suggest that there is conformational heterogeneity in the active WT protein and that DNA binding alters the environment of the heme-bound CO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.