Abstract
Low throughput is an inherent problem associated with most single-molecule biophysical techniques. We have developed a versatile tool for high-throughput analysis of DNA and DNA-binding molecules by combining microfluidic and dense DNA arrays. We use an easy-to-process microfluidic flow channel system in which dense DNA arrays are prepared for simultaneous imaging of large amounts of DNA molecules with single-molecule resolution. The Y-shaped microfluidic design, where the two inlet channels can be controlled separately and precisely, enables the creation of a concentration gradient across the microfluidic channel as well as rapid and repeated addition and removal of substances from the measurement region. A DNA array stained with the fluorescent DNA-binding dye YOYO-1 in a gradient manner illustrates the method and serves as a proof of concept. We have applied the method to studies of the repair protein Rad51 and could directly probe the concentration-dependent DNA-binding behavior of human Rad51 (HsRad51). In the low-concentration regime used (100nM HsRad51 and below), we detected binding to double-stranded DNA (dsDNA) without positive cooperativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.