Abstract
This work discusses theoretically the behavior of a microwave cavity and a Cooper pair beam splitter (CPS) coupled non-resonantly. The cavity frequency pull is modified when the CPS is resonant with a microwave excitation. This provides a direct way to probe the coherence of the Cooper pair splitting process. More precisely, the cavity frequency pull displays an anticrossing whose specificities can be attributed unambiguously to coherent Cooper pair injection. This work illustrates that microwave cavities represent a powerful tool to investigate current transport in complex nanocircuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.