Abstract

Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states. In condensed matter devices, material imperfections hinder a direct connection to simple topological models. Artificial systems, such as photonic platforms or cold atomic gases, open novel possibilities by enabling specific probes of topology or flexible manipulation e.g. using synthetic dimensions. However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin $J=8$. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible. In the center of the synthetic dimension -- a bulk of 11 states out of 17 -- the Chern marker reaches 98(5)\% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.