Abstract

ABSTRACT A series of tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]Cl2)-sequestered reverse micellar solutions of variable surfactant concentration were examined using fluorescence spectroscopy before and after thermal radical polymerization of the nonpolar phase. The [Ru(bpy)3]Cl2 emission spectra simulated aqueous solution chemical environments irrespective whether the nonpolar phase is liquid or polymerized into a solid. A range of surfactant concentrations were examined. Emission maxima of the reverse micelle solution-sequestered [Ru(bpy)3]Cl2 species are red-shifted with respect to aqueous [Ru(bpy)3]Cl2. The red-shift can be interpreted in the context of increasing chemical environment polarity. Emission maxima of the [Ru(bpy)3]Cl2 species of polymerized nonpolar phase at approximately 600 nm were consistent with [Ru(bpy)3]Cl2 aqueous species. The work represents a pathway to preserve solution-dependent chemical processes of molecular sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.