Abstract
Cancer metastasis is the primary reason for cancer-related deaths, yet there is no technique capable of detecting it due to cancer pathogenesis. Current cancer diagnosis methods evaluate tumor samples as a whole/pooled sample process loses heterogeneous information in the metastasis state. Hence, it is not suitable for metastatic cancer detection. In order to gain complete information on metastasis, it is desirable to develop a nondestructive detection method that can evaluate metastatic cells with sensitivity down to single-cell resolution. Here we demonstrated self-functionalized anionic quantum probes for in vitro metastatic cancer detection at a single-cell concentration. We achieved this by incorporating a nondestructive SERS ability within the generated probes by integrating anionic surface species and NIR plasmon resonance. To the best of our knowledge, this was the first time that metastatic cancer cells were detected through their neoplastic transformations. With reliable diagnostic information at the single-cell sensitivity in an in vitro state, we successfully discriminated against cancer malignancy states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.