Abstract

We measure the energy levels of the excitations of the flux tube between static quark and antiquark in three-dimensional SU(2) gauge theory. Combining exponential error reduction techniques and a variational method we are able to reduce the errors for the excited states significantly and to extract excited states in distinct parity and charge conjugation channels. It is conjectured that the infrared behavior (at large q\bar{q} separation R) of the flux tube is governed by an effective string theory. Indeed previous simulations show good agreement between lattice data and predictions from Nambu-Goto string theory. Recently, new results on the effective string theory obtained corrections to the Nambu-Goto predictions and showed that for the open string in three dimensions first corrections should appears at order 1/R^4. They correspond to boundary terms in the worldsheet field theory. These corrections are presumably small for the ground state, but significantly larger for the excited states and lift the degeneracies of the free theory. Assuming this functional form of the correction, we obtain for the coefficient b_2=-0.5(2)(2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.