Abstract

The monolayers of semiconducting transition metal dichalcogenides host strongly bound excitonic complexes and are an excellent platform for exploring many-body physics. Here we demonstrate a controlled kinetic manipulation of the five-particle excitonic complex, the charged biexciton, through a systematic dependence of the biexciton peak on excitation power, gate voltage, and temperature using steady-state and time-resolved photoluminescence. With the help of a combination of the experimental data and a rate equation model, we argue that the binding energy of the charged biexciton is less than the spectral separation of its peak from the neutral exciton. We also note that while the momentum-direct radiative recombination of the neutral exciton is restricted within the light cone, such restriction is relaxed for a charged biexciton recombination due to the presence of near-parallel excited and final states in the momentum space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.