Abstract

Heterostructured Au/CuS nanocrystals (NCs) exhibit localized surface plasmon resonance (LSPR) centered at two different wavelengths (551 and 1051nm) with a slight broadening compared to respective homostructured Au and CuS NC spectra. By applying ultrafast transient absorption spectroscopyweshow that a resonant excitation at the respective LSPR maxima of the heterostructured Au/CuS NCs leads to the characteristic hot charge carrier relaxation associated with both LSPRs in both cases. A comparison of the dual plasmonic heterostructure with a colloidal mixture of homostructured Au and CuS NCs shows that the coupled dual plasmonic interaction is only active in the heterostructured Au/CuS NCs. By investigating the charge carrier dynamics of the process,wefind that the observed interaction is faster than phononic or thermal processes (< 100fs). The relaxation of the generated hot charge carriers is faster for heterostructured nanocrystals and indicates that the interaction occurs as an energy transfer (we propose Landau damping or interaction via LSPR beat oscillations as possible mechanisms) or charge carrier transfer between both materials.Ourresults strengthen the understanding of multiplasmonic interactions in heterostructured Au/CuS NCs and will significantly advance applications where these interactions are essential, such as catalytic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call